Subscribe to RSS
DOI: 10.1055/s-0043-1775466
Enantioselective 1,4-Borylamination Enabled by Copper Catalysis
We thank the National Natural Science Foundation of China (22271161, 22188101), the Science Fund for Distinguished Young Scholars of Tianjin Municipality (23JCJQJC00180), the Fundamental Research Funds for the Central Universities (63223065 and 63243134), and Nankai University, for financial support.

Abstract
Compounds bearing both boryl and amino groups are highly valuable synthons in organic synthesis. However, while enantioselective 1,1- and 1,2-borylamination reactions have been developed, processes enabling distal borylamination have rarely been investigated. Here, we present an enantioselective 1,4-borylamination reaction, achieved through a copper-catalyzed cascade hydroborylation and hydroamination of arylidenecyclopropanes. This four-component reaction provides direct access to enantioenriched 4-aminoalkylboronate products with high chemo-, site-, and enantioselectivity. The versatility of these products was demonstrated through their broad transformations and extensive applications in the synthesis of various drug core structures. Additionally, preliminary mechanistic studies were conducted to investigate the reaction pathway, intermediates, and high chemo- and site-selectivity.
Key words
arylidenecyclopropane - 1,4-borylamination, borylative functionalization - copper catalysis - copper hydride - asymmetric synthesisPublication History
Received: 05 February 2025
Accepted after revision: 06 March 2025
Article published online:
09 April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Scott KA, Qureshi MH, Cox PB, Marshall CM, Bellaire BC, Wilcox M, Stuart BA. R, Njardarson JT. J. Med. Chem. 2020; 63: 15449
- 1b Marshall CM, Federice JG, Bell CN, Cox PB, Njardarson JT. J. Med. Chem. 2024; 67: 11622
- 2 McGrath NA, Brichacek M, Njardarson JT. J. Chem. Educ. 2010; 87: 1348
- 3a Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine. Hall DG. Wiley-VCH; Weinheim: 2005
- 3b Collins BS. L, Wilson CM, Myers EL, Aggarwal VK. Angew. Chem. Int. Ed. 2017; 56: 11700
- 4a Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
- 4b Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
- 4c Ros A, Fernández R, Lassaletta JM. Chem. Soc. Rev. 2014; 43: 3229
- 4d Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
- 4e
Fyfe JW. B,
Watson AJ. B.
Chem 2017; 3: 31
MissingFormLabel
- 4f
Hemming D,
Fritzemeier R,
Westcott SA,
Santos WL,
Steel PG.
Chem. Soc. Rev. 2018; 47: 7477
MissingFormLabel
- 4g Friese FW, Studer A. Chem. Sci. 2019; 10: 8503
- 4h Liu Z, Gao Y, Zeng T, Engle KM. Isr. J. Chem. 2020; 60: 219
- 4i
Whyte A,
Torelli A,
Mirabi B,
Zhang A,
Lautens M.
ACS Catal. 2020; 10: 11578
MissingFormLabel
- 4j Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. Chem. Rev. 2021; 121: 13238
- 4k Hu J, Ferger M, Shi Z, Marder TB. Chem. Soc. Rev. 2021; 50: 13129
- 4l Manna S, Das KK, Nandy S, Aich D, Paul S, Panda S. Coord. Chem. Rev. 2021; 448: 214165
- 5a Shibasaki M, Kanai M. Chem. Rev. 2008; 108: 2853
- 5b Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2011; 111: 7774
- 5c Yin Q, Shi Y, Wang J, Zhang X. Chem. Soc. Rev. 2020; 49: 6141
- 5d Xiang M, Pfaffinger DE, Krische MJ. Chem. Eur. J. 2021; 27: 13107
- 5e Cabré A, Verdaguer X, Riera A. Chem. Rev. 2022; 122: 269
- 5f Mathew S, Renn D, Rueping M. ACS Catal. 2023; 13: 5584
- 6a Matsuda N, Hirano K, Satoh T, Miura M. J. Am. Chem. Soc. 2013; 135: 4934
- 6b Sakae R, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2015; 54: 613
- 6c Jiang HC, Tang XY, Shi M. Chem. Commun. 2016; 52: 5273
- 6d Nishikawa D, Hirano K, Miura M. Org. Lett. 2016; 18: 4856
- 6e Kato K, Hirano K, Miura M. Chem. Eur. J. 2018; 24: 5775
- 6f Wu L, Zatolochnaya O, Qu B, Wu L, Wells LA, Kozlowski MC, Senanayake CH, Song JJ, Zhang Y. Org. Lett. 2019; 12: 8952
- 6g Nishino S, Nishii Y, Hirano K. Chem. Sci. 2022; 13: 14387
- 6h Li W, Chen H, Zheng Y, Lu Y, Xie J, Chen S, Lan Y, Song Q. ACS Catal. 2024; 14: 11318
- 7a Gao DW, Gao Y, Shao H, Qiao TZ, Wang X, Sanchez BB, Chen JS, Liu P, Engle KM. Nat. Catal. 2020; 3: 23
- 7b Jin S, Liu K, Wang S, Song Q. J. Am. Chem. Soc. 2021; 143: 13124
- 7c Jin S, Li J, Liu K, Ding WY, Wang S, Huang X, Li X, Yu P, Song Q. Nat. Commun. 2022; 13: 3524
- 7d Talavera L, Freund RR. A, Zhang H, Wakeling M, Jensen M, Martin R. ACS Catal. 2023; 13: 5538
- 7e Bhatt S, Nicely AM, Powell CU, Huff ME, Thibodeaux SB, Wang Y.-N, Vasylevskyi S, Hull KL. ACS Catal. 2024; 14: 18507
- 8
Zhu Y. -S,
Li JX,
Zhao HT,
Su B.
Chin. J. Chem. 2024; 42: 3588
MissingFormLabel
- 9a Zhao H, Lin Y, Jiang M, Su B. Chem. Sci. 2023; 14: 7897
- 9b Liu S, Ding K, Su B. ACS Catal. 2024; 12102
- 9c Zhu Y.-S, Guo Y.-L, Zhu Y.-Y, Su B. J. Am. Chem. Soc. 2024; 146: 32283
- 10a Nakamura I, Yamamoto Y. Adv. Synth. Catal. 2002; 344: 111
- 10b Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
- 10c O’Reilly ME, Dutta S, Veige AS. Chem. Rev. 2016; 116: 8105
- 10d Fumagalli G, Stanton S, Bower JF. Chem. Rev. 2017; 117: 9404
- 11a Simaan S, Goldberg AF. G, Rosset S, Marek I. Chem. Eur. J. 2010; 16: 774
- 11b Chen K, Zhu Z.-Z, Zhang Y.-S, Tang X.-Y, Shi M. Angew. Chem. Int. Ed. 2014; 53: 6645
- 11c Li M, Kwong FY. Angew. Chem. Int. Ed. 2018; 57: 6512
- 11d Yao J, Chen Z, Yu L, Lv L, Cao D, Li C.-J. Chem. Sci. 2020; 11: 10759
- 11e Geng HQ, Wu XF. Chem. Commun. 2022; 58: 6534
- 11f Wu FP, Wu XF. Chem. Sci. 2022; 13: 4321
- 11g Yang LM, Zeng HH, Liu XL, Ma AJ, Peng JB. Chem. Sci. 2022; 13: 7304
- 11h
Tan BB,
Hu M,
Ge S.
Angew. Chem. Int. Ed. 2023; 62: e202307176
MissingFormLabel
- 11i Zeng HH, Wang YQ, He YY, Zhong XL, Li H, Ma AJ, Peng JB. J. Org. Chem. 2024; 89: 2637
- 12a Verdugo F, Villarino L, Durán J, Gulías M, Mascareñas JL, López F. ACS Catal. 2018; 8: 6100
- 12b Yu R, Fang X. Org. Lett. 2020; 22: 594
- 12c Zhou J, Yang Q, Lee CS, Wang JJ. Angew. Chem. Int. Ed. 2022; 61: e202202160
- 12d Zhou J, Meng L, Lin S, Cai B, Wang JJ. Angew. Chem. Int. Ed. 2023; 62: e202303727
- 12e Liu XL, Lin HZ, Tan LQ, Peng JB. Chem. Sci. 2023; 14: 2348
- 12f Wu L, Zhang L, Guo J, Gao J, Ding Y, Ke J, He C. Angew. Chem. Int. Ed. 2024; e202413753
- 12g Fu B, Wang L, Chen K, Yuan X, Yin J, Wang S, Shi D, Zhu B, Guan W, Zhang Q, Xiong T. Angew. Chem. Int. Ed. 2024; e202407391
- 12h Tan BB, Ge S. Angew. Chem. Int. Ed. 2025; 64: e202419522
- 13a Zheng W, Tan BB, Ge S, Lu Y. J. Am. Chem. Soc. 2024; 146: 5366
- 13b Zhou J, Meng L, Yang Z, Wang JJ. Adv. Sci. 2024; 11: 2400096
- 14 CCDC 2374499 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 15a Petri GL, Raimondi MV, Spano V, Holl R, Barraja P, Montalbano A. Top. Curr. Chem. 2021; 379: 34
- 15b Bhat AA, Singh I, Tandon N, Tandon R. Eur. J. Med. Chem. 2023; 246: 114954
- 16a Goel P, Alam O, Naim MJ, Nawaz F, Iqbal M, Alam MI. Eur. J. Med. Chem. 2018; 157: 480
- 16b Chen Q.-S, Li J.-Q, Zhang Q.-W. Pharm. Fronts 2023; 05, e1
- 17 Renault J, Bouvry C, Cupif JF, Hurvois JP. J. Org. Chem. 2023; 88: 3582
- 18 Appayee C, Fraboni AJ, Brenner-Moyer SE. J. Org. Chem. 2012; 77: 8828
- 19 Oeschger R, Su B, Yu I, Ehinger C, Romero E, He S, Hartwig J. Science 2020; 368: 736
- 20a Leitch DC, Payne PR, Dunbar CR, Schafer LL. J. Am. Chem. Soc. 2009; 131: 18246
- 20b Kikuchi H, Horoiwa S, Kasahara R, Hariguchi N, Matsumoto M, Oshima Y. Eur. J. Med. Chem. 2014; 76: 10
- 20c Ortiz GX. Jr, Kang B, Wang Q. J. Org. Chem. 2014; 79: 571
- 21 Niljianskul N, Zhu SL, Buchwald SL. Angew. Chem. Int. Ed. 2015; 54: 1638
- 22 Issenhuth J.-T, Notter F.-P, Dagorne S, Dedieu A, Bellemin-Laponnaz S. Eur. J. Inorg. Chem. 2010; 529
- 23 Bandar JS, Pirnot MT, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 14812
- 24a Miki Y, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2013; 52: 10830
- 24b Zhu S, Niljianskul N, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 15746
- 25a Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318
- 25b Pirnot MT, Wang Y.-M, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 48
- 25c Hirano K, Miura M. J. Am. Chem. Soc. 2022; 144: 648
- 26 Deutsch C, Krause N. Chem. Rev. 2008; 108: 2916
- 27 Appella DH, Moritani Y, Shintani R, Ferreira EM, Buchwald SL. J. Am. Chem. Soc. 1999; 121: 9473
- 28 Nishikawa D, Sakae R, Miki Y, Hirano K, Miura M. J. Org. Chem. 2016; 81: 12128
For reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For reviews on the ring-opening transformations of methylenecyclopropanes and derivatives, see:
For selected racemic ring-opening functionalization reactions of ACPs, see:
For enantioselective ring-opening functionalization of ACPs, see: